[CONTRIBUTION FROM THE CRVOGENIC LABORATORY AND THE DEPARTMENT OF CHEMISTRY, THE OHIO STATE UNIVERSITY]

Low Temperature Heat Capacities of Inorganic Solids. XII. Heat Capacity and Thermodynamic Properties of Cuprous Bromide from 16 to 300°K.¹

By Jih-Heng Hu and Herrick L. Johnston

RECEIVED MAY 2, 1952

The heat capacities of cuprous bromide have been measured in the temperature range 14 to 300° K., and the derived thermodynamic functions have been calculated and tabulated at integral values of the temperature over this range. The value of the entropy at 298.16° K. = 22.97 ± 15 e.u. The peculiar shape of the heat capacity curve has been explained in terms of a particular type of force field in which the copper ion moves. Third law is checked through cell measurements.

Introduction

There is a great deal of similarity between the physical properties of silver iodide and cuprous bromide. Pitzer² found a very peculiar shape in the heat capacity curve of the former, which he explained by the assumption that there exists a certain type of potential of the force field, in which the silver ion moves within the relatively rigid tetrahedron of iodide ions. It was therefore thought desirable to measure the heat capacity of the cuprous bromide to see if the same peculiarity existed. No previous measurements have been made on CuBr at low temperatures.

Apparatus and Materials

The cuprous bromide used was prepared as follows:³ About 100 g. of cupric sulfate and 40 g. of ammonium bromide were dissolved in 1500 cc. of water, and treated with a stream of sulfur dioxide, forming small white crystals of cuprous bromide. These were filtered rapidly from the mother liquid, washed with sulfurous acid, exposed over potassium hydroxide *in vacuo* for several days and finally transferred into a desiccator with P_2O_5 as drying agent.

TABLE I

Molar Heat Capacity of Cuprous Bromide

		$C_{\mathbf{p}}$,			$C_{\mathbf{p}}$,
Mean T.		cal. mole ⁻¹	Mean T.		cal. mole ⁻¹
°K.	ΔT	deg1	°K.	ΔT	deg1
15.51	2.630	1.685	104.44	7.945	9.847
18.09	2.149	2.025	112.43	8.311	10.13
20.78	2.977	2.371	131.67	10.143	10.46
24.25	3.845	2.807	131.27	9.209	10.73
27.71	3.156	3.243	141.41	9.770	10.98
30.89	3.391	3.662	150.84	9.062	11.21
34.29	3.428	4.066	159.93	9.357	11.38
37.90	3.775	4.568	170.11	10.995	11.57
42.47	5.388	5.117	180.57	10.278	11.72
44.45	4.021	5.340	192.01	11.781	11.93
48.54	4.278	5.800	203.50	11.046	12.04
52.96	4.582	6.274	214.73	10.374	12.21
54.34	5.546	6.487	225.10	9.830	12.32
60.35	4.509	7.094	236.25	11.161	12.49
66.11	8.357	7.636	247.46	10.585	12.57
73.09	5.631	8.150	258.27	10.078	12.71
78.58	5.190	8.584	268.22	9.669	12.75
84.00	5.576	8.903	277.77	9.269	12.86
84.73	3.530	9.000	286.91	8.883	13.01
89.87	6.719	9.250	295.83	8.531	13.11
96,94	7.105	9.552			

 This work was supported in part by the Office of Naval Research under contract with The Ohio State University Research Foundation.
 K. S. Pitzer, THIS JOURNAL, 53, 516 (1941).

(2) K. S. Pitzer, THIS JOURNAL, 63, 516 (1941).
(3) J. W. Mellor, "A Comprehensive Treatise on Inorganic and Theoretical Chemistry," Vol. 3, Longmans, Green and Co., New York, N. Y., 1923, p. 192.

The water used for washing the cuprous bromide had previously been boiled in a stream of nitrogen to expel dissolved oxygen which decomposes cuprous bromide. Its copper content was determined by electrolytic analysis and its bromine content was analyzed gravimetrically by precipitation as silver bromide. Assuming that the entire copper and bromine content was derived from cuprous bromide, the sample contained 99.92 and 99.93% of CuBr, respectively. "Solid Calorimeter No. 6," of the group of seven vacuum

"Solid Calorimeter No. 6," of the group of seven vacuum calorimeters described in the first paper⁴ of this series, was filled with 75.397 g. (0.5254 mole) of cuprous bromide for heat capacity measurements.

Experimental Results

Experimental heat capacities are summarized in Table I. In Fig. 1 the experimental values are plotted along with the best fitting Debye–Einstein function, but the heat capacity of the cuprous bromide deviates appreciably from the latter.

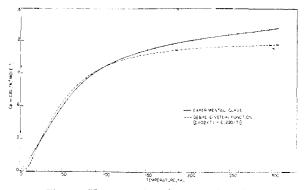


Fig. 1.—Heat capacity of cuprous bromide.

Table II gives the heat capacity and derived thermodynamic functions for cuprous bromide at selected integral

TABLE II THERMODYNAMIC FUNCTIONS FOR CUPROUS BROMIDE

	~	~		$(H^0 -$	$-(F^0 -$
	C_{p} ,	Sº,	TT: TT0	$H_0^0)/T$,	$H_0^0)/T$
Tomo	cal. mole ⁻¹	cal. mole ⁻¹	$H^0 - H^0_0,$ cal.	cal, mole ⁻¹	cal. mole ⁻¹
°K.	deg. ⁻¹	deg. ^{−1}	mole ⁻¹	deg1	deg. ⁻¹
16	1.732	0.8772	9.761	0.6101	0.2671
25	2.192	1.8975	30.730	1.2292	0.6683
50	5.969	4.8747	142.53	2.8506	2.0241
75	8.335	7.7754	323.47	4.3129	3.4625
100	9.672	10.378	550.44	5.5044	4.874
125	10.555	12.634	803.63	6.4290	6.205
150	11.180	14.617	1075.8	7.1720	7.445
175	11.642	16.376	1361.3	7.7789	8.597
200	12.019	17.957	1657.3	8.2865	9.670
225	12.337	19.391	1961.7	8.7187	10.672
250	12.616	20.706	2273.8	9.0952	11.611
275	12.864	21.920	2592.3	9.4265	12.494
298.16	13.084	22.969	2892.8	9.7022	13.267
300	13.100	23.050	2916.9	9.7230	13.327

(4) H. L. Johnston and E. C. Kerr, THIS JOURNAL, 72, 4733 (1950),

Vol. 74

values of the temperatures. The entropy at 298.16°K. is 22.97 e.u., of which 0.88 e.u. is contributed by extrapolation below 16° K. Our estimate of the uncertainty in the entropy is ± 0.15 e.u., of which ± 0.10 e.u. is due to that of the extrapolation.

Discussion

While the crystal structure of cuprous bromide is cubic⁵ (zincblende type), and that of silver iodide is of the wurtzite type,² both the silver ion in the latter and the cuprous ion in the former are surrounded tetrahedrally by the respective halide ions: both are ionic conductors⁶ with the metallic ions as the sole carrier; and both crystals undergo modifications at high temperatures.⁷

Pitzer² explains the odd shape of the heat capacity curve of silver iodide by the assumption that the probable potential energy function for the silver ion has a single minimum at the center of the relative rigid iodide tetrahedron, which rises much more rapidly in the direction of one iodide ion than in the opposite direction toward the hole between the other three.

It is reasonable to expect, therefore, that, since similar potential energy functions exist for both these compounds, the unusual shape of the heat capacity curve of the cuprous bromide may thus also be explained.

Third Law Check through Cell Measurements

(a).—The free energy and heat of formation of cuprous bromide may be calculated from free energies and heats of reaction by the equations

Cu-amalgam + $AgBr = Ag + CuBr$	ΔF_1 , ΔH_1
Cu = Cu-amalgam	ΔF_2 , ΔH_2
$Ag + \frac{1}{2}Br_2(1) = AgBr$	ΔF_3 , ΔH_3
$\overline{Cu + \frac{1}{2}Br_2(1)} = CuBr(s)$	$\Delta F, \Delta H, \Delta S$

John-Held and Jellinek⁸ have obtained $\Delta F_1 = -633$ cal., $\Delta H_1 = 97$ cal. through the measurements of the cell

Cu-amalgam, CuBr | HBr (0.1 N) | AgBr, Ag

Oku⁹ has studied the cell C

His results are: $E_{238,16} = 0.00512$ volt, dE/dT = -0.0000737 volt/deg. $(0-40^{\circ})$. From which it has been derived $\Delta F_2 = -236$ cal., $\Delta H_2 = -1250$ cal.

Jones and Baeckstrom¹⁰ have obtained $\Delta F_3 =$ -22,940 cal. through the measurements of the cell

Pt,
$$Br_2(1) + KBr$$
, KBr , $AgBr$, Ag

Bertram and Roth¹¹ give the most probable value of ΔH_3 to be -23,710 cal. from their own measurements and a consideration of all early data. The uncertainty is estimated to be about 50 cal.

We obtain, finally, $\Delta F = -23,809 \pm 20$ cal.; $\Delta H = -24,860 \pm 90$ cal. and $\Delta S = -3.52 \pm$ 0.40 e.u.

If we substitute the entropies of copper $(7.97 \pm 0.02)^{12}$ and of bromine $(36.8 \pm 0.4)^{12}$ into the

(5) L. H. Germer, Phys. Rev., 61, 309 (1942).

(6) J. N. Frers, *Ber.*, **61B**, 377 (1928).
(7) J. W. Mellor, ref. 3, Vol. 2, 193 (1923).
(8) W. Von John-Held and J. Jellinek, *Z. Elektrochem.*, [7A] **42**, 416 (1936).

- (9) M. Oku, Sci. Repts. Tohoku Imp. Univ., (Ser. 1) 22, 290 (1933). (10) G. Jones and S. Baeckstrom, THIS JOURNAL, 56, 1524 (1934).
- (11) A. Bertram and W. A. Roth, Z. physik. Chem., A178, 227 (1937).

equation for entropy of formation, we have S° CuBr, $298.16 = 22.85 \pm 0.6$ e.u. which differs only by $0.12 \text{ e.u. from our calorimetric value} (22.97 \pm 0.15)$.

(b). Another Third Law Check Through Cell Measurements.—The free energy of formation can also be calculated from the free energies of reaction of the equations

Cu-amalgam + HBr $(a = 1) = \frac{1}{2}H_2(g) + CuBr$	ΔF_1
Cu = Cu-amalgam	ΔF_2
$\frac{1}{2}H_2 + \frac{1}{2}Br_2(1) = HBr (a = 1)$	ΔF_3
$C_{11} + \frac{1}{_{2}Br_{2}(1)} = C_{11}Br$	ΔF

Ishikawa, Yamazaki and Murooka13 have studied the cell

Cu-amalgam, $CuBr \mid HBr(m) \mid H_2$, Pt

By using Harned, Keston and Donelson's¹⁴ values of activity coefficient of hydrobromic acid at various values of molarity and the relation $E^{\circ} =$ $E + 0.1183 \log m\gamma$, we find $E^{\circ}_{298.16} = -0.0435$ volt. From which $\Delta F_1 = 1003$ cal. and $\Delta F_2 =$ -236 cal. For ΔF_3 , let us consider the reactions

$$Ag + HBr (a = 1) = \frac{1}{2}H_2 + AgBr \qquad \Delta F_4$$

$$Ag + \frac{1}{2}Br_2(1) = AgBr \qquad \Delta F_5$$

Harned, Keston and Donelson¹⁴ have measured the cell

Pt, H (1 atm) | HBr(m) | AgBr, Ag

From their data, we find that $\Delta F_4 = 1638$ cal.; $\Delta F_5 = -22,940$ cal.¹⁰ which we have already used in (a); $\Delta F_3 = \Delta F_5 - \Delta F_4 = -24,578$ cal. Thus $\Delta F = -23,811$ cal.

The heat of formation can be calculated as

Cu-amalgam + HBr $(0.1 m)$ = CuBr + $\frac{1}{2}$ H ₂	ΔH_1
Cu = Cu-amalgam	ΔH_2
${}^{1}/{}_{2}\mathrm{H}_{2} + {}^{1}/{}_{2}\mathrm{Br}_{2}(g) = \mathrm{HBr}$	ΔH_3
HBr(g) = HBr(0.1 m)	ΔH_4
$\frac{1}{_{2}}Br_{2}(g) = \frac{1}{_{2}}Br_{2}(1)$	ΔH_5
$Cu + \frac{1}{2}Br_2(1) = CuBr(s)$	ΔH

From the results of Ishikawa, Yamazaki and Murooka,¹³ and of Oku,⁹ we have $\Delta H_1 = 4838$ cal.; $\Delta H_2 = -1250$ cal.

For ΔH_3 , ΔH_4 , and ΔH_5 , we choose: $\Delta H_3 =$ $-12,100 \text{ cal.}^{14}; \Delta H_4 = -20,000 \text{ cal.}^{15} \text{ and } \Delta H_5 = +3670 \text{ cal.}^{16}$ Thus $\Delta H = -24,824 \text{ cal.}$

From the values of ΔF and of ΔH at 298.16°K., we have $\Delta S_{298.16} = -3.40$ e.u. as entropy of formation of cuprous bromide.

By substituting entropies of copper¹³ and of bromine¹³ as we have done in (a), we find $S^{\circ}_{\text{cuBr, 288-16}} = 22.97 \pm 0.8 \text{ e.u.}$

The exact agreement with our calorimetric value is of course more than expected.¹⁷

Columbus 10, Ohio

(13) F. Ishikawa, S. Yamazaki and T. Murooka, Sci. Repts. Tohoku Imp. Univ., (Ser. 1), 23, 115 (1934).

(14) H. S. Harned, A. S. Keston and J. G. Donelson, THIS JOURNAL, 58, 989 (1936).

(15) D. N. Lewis and M. Randall, "Thermodynamics and the Free Energy of Chemical Substances" McGraw-Hill Book Co., Inc., New York, N. Y., 1923, p. 517. This value has also been used by A. R. Gordon and C. Barnes (J. Chem. Phys., 1, 692 (1933)) in their calculations on dissociation equilibrium of hydrogen bromide from spectroscopic data and they have obtained very consistent results.

(16) W. A. Roth and A. Bertram, Z. Elektrochem., [6] 43, 376 (1937). Their value differs very slightly from that of J. Thomson.

(17) Bur, of Standards, U. S. Selected Values of Chemical Thermodynamic Properties (1949). The heat of condensation of bromine given by A. Smits and D. Cannegieter (Z. physik. Chem., A168, 391 (1934)) is very near to the value we have used.

⁽¹²⁾ K. K. Kelley, U. S. Bur. Mines Bull. No. 477 (1948).